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Supersymmetry and point canonical transformations in the 
path integral 

Michael O’Connor 
Department of Physics, Loomis Laboratory, University of Illinois at Urbana- 
Champaign, 1110 W Green St, Urbana IL 61801, USA 

Received 14 November 1989 

Abstract. We show that in the path integral quantisation procedure for free non- 
relativistic particles, point canonical transformations can be performed by a naive 
change of variables in the path integral, provided we use the corresponding super- 
symmetric path integral. 

1. Introduction 

For the path integral treatment of simple quantum mechanics it is known that point 
canonical transformations performed by simply changing integration variables in the 
path integral leads to  erroneous results. Edwards and Gulyaev [l] considered the 
simple problem of the quantum mechanics of a free non-relativistic particle of unit 
mass moving in two dimensions. They showed that on transforming from Cartesian t o  
polar coordinates z = T cos 0, y = r sin 0 ,  the path integral 

is not equal to  

where J[r] - niri. The reason the above path integral gives the wrong result can 
be traced to  the stochastic nature of the quantum paths. For ordinary differential 
paths upon discretisation [(Az)’ + (Ay)’]/At is negligible as At + 0, whereas for 
the quantum stochastic paths [(A.)’+ (Ay)’]/At = O(h) .  In order to  make equation 
(1.2) correct an additional potential term of order O(h’r-’) is required. See e.g. [2-41. 

Gervais and Jevicki [5] discussed the problem of point canonical transformations 
in the path integral method with the conclusion that for the case of a trivial system 
such as L = $6, ,x0xb a careful treatment of point transformations by the use of the 
discretised path integral leads t o  additional potential terms in the transformed action, 
contrary t o  the case of the usual formal treatment. Omote [6] was able to  generalise 
the result of Gervais and Jevicki to systems with L = i g i j ( q ) q i #  on curved manifolds. 
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2666 M O'Connor 

For the system with Lagrangian L = +6,bxazb considered by Gervais and Jevicki, 
we write the transformed path integral in curvilinear coordinates qp as 

/ D[z]J, exp (i / dt{ ~ C ~ , , ~ P Z ~ } )  = / D[q]J, exp (i / dt{ $ g p v q p q " } )  (1.3) 

where J, = 1 and J g  are multiplicative Jacobian factors. Naive formal path integral 
methods would give the erroneous result that J, = 1, but in this case it is equal to  
the exponential of the additional potential terms. 

We can make an analogy with statistical mechanics [7]. In statistical mechanics 
the ensemble average is taken over phase space S n d q n d P n . .  .. However, Jacobian 
factors will appear if instead of phase space the average is taken over coordinate 
space; s n dqndPn . . . becomes s Jdq" , . .. The appearance of a Jacobian factor in 
the transformed path integral implies that we should consider the integration to  be 
performed in a bigger space in which the multiplicative factor is a constant. 

In this paper we propose a new scheme for dealing with the problem of point 
canonical transformations of the path integral. We write the Jacobian factors of 
equation (1.3) as fermionic path integrals. When this is done, naive change of bosonic 
and fermionic variables in the path integral no longer leads to erroneous results. The 
resulting path integral will also be invariant under additional transformations which 
mix bosonic and fermionic variables; the path integral becomes supersymmetric. 

In [8] it was shown that the formal path integral containing bosonic and fermionic 
variables is the continuum limit of the discret,e mid-point path integral. Thus in 
the following sections the discrete path integrals are evaluated using the mid-point 
prescription. 

The paper is organised as follows. In section 2 we briefly review the discretised 
path integral used by Gervais and Jevicki [5 ] .  We then take the continuum limit and 
give an explicit expression for the extra potential terms. The Jacobian factor will be 
expressed as a fermionic functional integral. In section 3 we use the result of Omote 
[6] to  generalise our discussion of section 2 to include the case of curved manifolds. 
Finally in section 4 we give a summary of our results. In the appendix we generalise 
our discussion to  include non-relativistic particles moving in a potential. 

2. Free particle on a flat manifold 

The Lagrangian for a free particle moving on an N-dimensional Euclidean manifold 
is given by L = i6,bx"xb. w e  consider a general point canonical transformation from 
Cartesian coordinates 2" to curvilinear coordinates qQ given by 

q t )  = P [ q ( t ) ] .  (2.1) 
The short time kernel connecting states at  z o ( t i )  = zf to states at  ",(tit,) = zftl, 
where t i+,  = ti + At, is given by the discrete path integral 

where Azf = zf++! -2:. Performing the point canonical transformation and expanding 
about the mid-point # = + i q ; ,  we have 

Azf  = ei(gi)Aqf + ~{a ,a , e i (~ i )}AqpAqi"Aq~  + . . . (2.3) 
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where e0,[q(t)] = 8,Fa[q(t)]. Naively we would expect Ax: = e;(&)Aqf and then the 
transformed action would be 

where g p v ( f i )  = 6,,*ei(qj)e;(&). This is equivalent to  a naive change of variables and 
is incorrect. Due to the stochastic nature of the quantum paths we find that (Aq)3/At 
and (Aq)4/At still contribute to  the path integral and thus cannot be neglected. The 
full contribution to  the action is 

The transformed integration measure is 

N N 

o= 1 

where g ( q i )  = det g p v ( q i ) ,  r;p = ~ g a x [ 8 , g x p  + B p g p x  - 8xg,p]l and we have expanded 
g1I2(qj) about the mid-point. Note that the exponential term in equation (2.7) was 
not found by Gervais and Jevicki [5]. This is because although they defined the 
transformed integration measure by equation (2.6), they later used a non-equivalent 
definition. 

Using the arguments outlined in [5] for replacing the second term on the right of 
equation (2.5) by a potential term we obtain the short time kernel 

where 

V, = Qgpy (gi ) r $ a  (Qi)r;p(qi ) *  (2.10) 

Finally, taking the continuum limit we obtain the transformed path integral in curvi- 
linear coordinates: 

(2.11) 

We would like to  interpret the extra potential terms in equation (2.11) as a J a c e  
bian factor 

1 Jq = exp( /dt{ihVv - h2Ve} (2.12) 
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and from the transformation of the path integral given by equation (1.3), we would 
like J, to  be related to  J, by a point canonical transformation. 

For finite-dimensional manifolds 

thus this is a reasonable candidate for J,. We now need to  give the transformation of 
the fermionic variables which is compatible with the point canonical transformation 
of the bosonic variables. 

For two overlapping coordinate patches on a manifold M with xa E 8 and qp E U,  
we define e t  = a x a / a q a  and E," = aqa/8xa. Then 

(2.14) 
(2.15) 
(2.16) 

where I.?;@ is a connection in U and r$ is a connection in 8. A general set of point 
canonical transformations for both bosonic and fermionic variables can be defined by 

(2.17) 

where $ * p  and $, are the transformed fermionic variables and Rabcd is the Riemann 
curvature tensor. 

Returning to  our problem of transforming from Cartesian coordinates to curvilinear 
coordinates, in which case gab = hab ,  the connections Fta and the curvature tensors 
Rabcd are zero. Hence the transformed Jacobian factor is 

J, = / D[4*] D[4] ex*( 

It remains to show that integrating out the fermionic variables we obtain the extra 
potential terms of equation (2.12). To evaluate the fermionic integral it is easiest to  
work with imaginary time r .  Then 

J, = det [ { ~ 6 ;  d - I'Laqa > I  6(r - 1') . (2.19) 

Using the retarded boundary condition 

(2.20) 
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the determinant can be expressed as 

J, = det [d/dr] det [6;6(r - 8) - e(r - T’)I’;~$‘] 
= exp n{ In [6;6(r - r’) - e( r - ~ / ) r ; , p ]  } (2.21) 

where det[d/dr] is a constant which can be set equal to one (this shows that 3, = 1).  
The identity d r  dT’e(r - .’)e( r’ - r )  = 0 can be used to show that terms higher than 
second order will not contribute to  the expansion of the logarithm in equation (2.21). 
However, because of the stochastic nature of the quantum paths (qP(r)q”(r’)) = 
hgp” [q(r)]6(r - r’), a second order term will the contribute. Expanding the logarithm 
the non-zero terms give 

J ,  = exp(- /d. O(0)I’;aqp 

- 1 J d r d r ‘  e(r - r ‘ )r~a[q(~)]qp((7)6(r ’  - ~)I‘;~[q(r’)]q”(r’) + . . . . 
2 ) 

J, =exp(~-df{ihVv - h 2 V e } ) .  (2.12) 

(2.22) 

Using e(0) = 6, the stochastic nature of the quantum paths, and changing to  real 
time we obtain the desired result 

In summary the path integral 

(2.23) 

remains invariant under the naive change of variables corresponding to a point canon- 
ical transformation. The transformed path integral 

J D M  D[Vl D[$l exP(; J dt{:!Jp”ip4” + $ * p  [i(d/dW; - ir;*!Y)$”} ) (2.24) 

upon integrating out the fermionic variables gives equation (2.1 l), the path integral 
in curvilinear coordinates. Note that the action in equation (2.23) is trivially super- 
symmetric for the transformations 

(2.25) 

where c*  and E are anticommuting constants. The action in equation (2.24) is super- 
symmetric with respect to  the following transformations: 

b C q p  - - E * $J*p - EgP”$J, 

6 , $ * ~  = -ic[qp + igaPP‘ Pr *a +*7 1 
6 C P  $J = iE*[gp,qu - ~I‘:,$J*~$J~] - Egah;P*p$,. (2.26) 

Equations (2.26) are the point canonical transformations of equations (2.25), where 
6,qp = E:6,xa. 
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3. Free particle on a curved manifold 

By rtquiring the corresponding Hamiltonian for a free particle on a curved manifold 
to be invariant under general point canonical transformations, Omote [6] was able to 
write the short time kernel K[qi+l, ti+*; qi, ti] as a discrete path integral 

where the extra potential is 

Expanding about the mid-point we have 

thus taking the continuum limit of equation (3.1), we obtain the path integral 

/D[q]exp(i  /dt{$g,,q’q” + ihV, - h2VE} (3.5) 

where 

Following the procedure of section 2 ,  we write the path integral equation (3.5) as 

where the extra potential terms are contained in the Jacobian factor. It will be shown 
that the Jacobian factor can be written as a fermionic path integral and that the total 
action is supersymmetric. The supersymmetric generalisation of L = ig,,,,q p q ” is that 
of the supersymmetric non-linear a-model [9] 

L ,  = ~ g , , , , ~ ~ c j ”  + $ * p  [ igb;  - ir;,4” ] $” + $R,p,6$J*”$Jp$*7$6 (3.8) 

which is supersymmetric under the supersymmetry transformations of equation (2.26). 
Thus the Jacobian factor is 
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We show that  the path integral equation (3.7) is invariant under the point canonical 
transformations 

q' = E:Xa 
+ * p  = E:(*a 

$ p  = eL(b 

RODr' = e"pfe:EdRa 6 -  b d . (3.10) 
The  transformed Jacobian factor is 

J ,  = / D[(*] D[(] exp (i / dt { (*' [i&a: - if':cic](, + $ R ~ , d ( * a ( b ( * c ~ s } )  (3.11) 

and the transformed path integral is 

I t  only remains for us to  show that 

The above identity can be shown using standard coordinate space path integral tech- 
niques. The generating functional for the free fermionic field is 

= exp (-f dtdt'{V*'(t)O(t - t ' )~ , , ( t ' ) } )  (3.14) 

for retarded boundary conditions, where q * p  and v,, are fermionic sources. Then for 
HI = i$*pr;aqa$v + 4RaPr*$*"$p$*f$6, the Jacobian factor can be written as 

Jq = e x p ( - i  Jd t  H,[(-ih6/6rl*),(ih6/Srl)] Z,[q*,g] (3.15) 1 
The  fermionic propagator is 

( o ~ ~ $ * y t ) $ ~ ( t ' ) l o )  = -ha;e(tl- t )  (3.16) 
and from the stochastic nature of the quantum paths we have 

(OlTcj"(t)q"(t')lo) = ihgp" [q(t)]6(t - t ' ) .  (3.17) 
An example of a four-fermion correlation is 

(ol~$*~(t)$,(t)$*~(t')$~(t')10) = h2a;6;e(t - t ) q t '  - t i )  - Pa,aa;e(t' - t ) e ( t  - t i ) .  

(3.18) 
Using the above propagators and the fact that  J dt dt'O(t - t')O(t' - t )  = 0, the only 
surviving terms in the perturbation expansion give the desired result 

JQ =exp($/dt{ihVv -h2VE}) .  (3.19) 
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4. Summary and discussion 

In section 2 we considered a free non-relativistic particle with Lagrangian L = 
$6,,xaib moving on a flat manifold. We found that path integral quantisation leads 
to a path integral which is not invariant under change of variables corresponding to 
a point canonical transformation. In section 3, for a free particle moving on a curved 
manifold with Lagrangian L = ig , , ,$ ’q” ,  we found that the usual path integral quan- 
tisation 

is not invariant under a point canonical transformation. 
It would be rather disappointing to conclude (as in [4]) that point canonical trans- 

formations cannot be handled by the formal path integral. In section 2 we found that 
formal path integral techniques can be used to show that the path integral remains in- 
variant under naive change of variables, provided we are willing to introduce fictitious 
fermionic variables. 

We would now like to speculate on the significance of adding the fermionic vari- 
ables. For L, = $6,bxaxb in Cartesian coordinates, quantisation by the path integral 
method gives 

We suggest the following quantisation procedure for free particles. First add to  the free 
particle Lagrangian LB a fermionic Lagrangian L ,  which makes the total Lagrangian 
L ,  = L, + L, supersymmetric. Quantisation is then obtained by integrating over all 
bosonic and fermionic paths 

1 D[zl D[(*l D[(l exp (i 1 dt{LB + LF)) .  (4.3) 

In Cartesian coordinates these two quantisation procedures coincide. Nonetheless, only 
the second procedure of equation (4.3) will transform correctly for a naive changes 
of variables in the path integral corresponding to a point canonical transformation. 
For a free particle on a curved manifold with Lagrangian L ,  = +gabxaxb the quan- 
tisation procedure given by equation (4.3), where L ,  = (*“[i(d/dt)b; - iF;,i“](b 
+~Rabcd(*a(b(*c(~, leads to a quant,um theory that is invariant under point canonical 
transformations, whereas the quantisation given by equation (4.2) leads to a non- 
equivalent quantum theory that is not invariant under point canonical transforma- 
tions. 

The geometrical interpretation of supersymmetric quantum mechanics is that it 
corresponds to the Laplacian acting on differential forms [9]; this suggests the following 
geometrical interpretation of the quantisation procedure of equation (4.3). Quantum 
mechanics is equivalent to a Hamiltonian (Laplacian) acting on functions (O-forms). 
We enlarge the space of states by generalising the Hamiltonian (Laplacian) so that 
it acts on pforms. This step corresponds to using the supersymmetric path integral 
instead of the ordinary path integral. By construction the Laplacian acting on dif- 
ferential forms is covariant, hence we expect the supersymmetric path integral to  be 
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covariant. The  original quantum mechanics is then recovered by restricting the states 
of interest 'physical states' to be 0-forms. 

After this work was completed, we received a preprint [ l l]  from de Alfaro and 
Gavazzi in which a different approach was used to investigate the covariance of the 
path integral for supersymmetric quantum mechanics. 
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Appendix. 

In this appendix we outline how the results for the non-relativistic free particle may 
be generalised to include a potential. The Lagrangian in Cartesian coordinates is 

I t  follows that  the path integral 

will transform correctly for a naive change of variables; however, it is no longer super- 
symmetric. The  above path integral can be made supersymmetric, a t  least formally, 
as follows. Assume that  the Hamiltonian has a ground-state wavefunction $, with 
ground-state energy E,. Then [lo] 

and 

v ( x )  = i 6ab (aau ) (abu)  - $h6ab(dadbu) + EO (A.4) 

where U = -hln 4,. The path integral equation (A.2) then becomes 

exp(-$ J d t  E,) JD[x]D[<*] D[(]exp(i  /dt{$5abi"5b - $bab(a ,U) (8 ,U)  

The  action in equation (A.5) is supersymmetric under the following supersymmetry 
transformations: 
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The transformed path integral in curvilinear coordinates is 

(A.7) 
x +*, [i-b; d - ir;,ia - g . ’ ( v , ~ , ~ ) l g , j )  

dt 

where we have used (8,LJ) = E:(B,U), V,U = a,U, and V,V,U = (a,a,U) - 
r;,(a,U). The action in equation (A.7) is supersymmetric under the transformations 

bcq, = €*+*, - €gPy+, 
be+*, = -ic[q, + iga@I‘Fv+a+*V + igfi’(v,~)] 

bC+, = ie*[g,,,qu - ir$+*a+p - ~(v,u)] - cga@r;g%+7. ( A 4  

The generalisation to curved manifolds is straightforward. For L = bg,,,$’q” - 
V(q) the corresponding ground-state wave equation is 

H+o = -~h2g’”V,Vu+o + V(a)+o = Eo+, (A.9) 

from which 

V(q) = ~ S ~ ” ( V , U ) ( V , U )  - ~hg’’(v,v,u) + Eo. (A.lO) 

This leads to the supersymmetric path integral 

which is supersymmetric under the transformations of equation (A.8). 
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